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Chapter 7

Trace-element geochemistry and distribution during magmatic processes
7.1 Introduction


In Chapter 3, we showed how the first-order petrogenesis of a complicated system could be investigated by describing the system in terms of its major components, that is, its major element composition (major elements are defined as occurring at wt. % levels).  Phase diagrams in simple systems were thus used to understand the evolution of phase proportions and their major-element compositions as a function of temperature, pressure, and bulk system composition.  The effects of trace-elements on the petrogenesis of a system was considered to be small because trace-elements typically do not contribute to forming any mineral or melt phase, but instead substitute for major ions in a mineral or melt at the trace level.  Because trace-elements do not usually contribute to the formation of new phases, it follows from the phase rule that we can for the most part describe the state of a system (T, P, and the number of phases) using only its major components.


However, trace-elements can be used as an additional tool for understanding the petrogenesis of a rock.  Trace-elements are partitioned systematically between mineral and melt phases, so their abundances in melts and minerals can be used to shed light on the processes of partial melting and melt crystallization.  In addition, a number of trace-elements decay radioactively to another trace-element, allowing the isotopic composition of such daughter elements to be used to constrain the timescales of petrologic processes that fractionate parent/daughter elemental ratios.

7.2 Partition coefficient


The ratio of the concentration of a trace-element in one phase relative to another phase is called the partition coefficient.  In general, the partition coefficient of an element i for a given mineral j is defined to be the ratio of its concentration in the mineral to that in the melt at equilibrium:
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When D<1, the element is said to be incompatible in the mineral.  When D>1, the element is said to be compatible.  For a rock, consisting of several phases j, the bulk partition coefficient is given by the weighted average of the individual partition coefficients for each phase:
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(7.2)

where Xj represents the weight fraction of the jth phase in the solids.


The partition coefficient can be put into thermodynamic context using the following example.  Consider the following reaction

JMgSi2O6 (cpx) = JMgSi2O6 (melt)





(7.3)

where the cation J is exchanged between a clinopyroxene crystal and a melt.  The equilibrium constant for this reaction is
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(7.4)

The equilibrium constant can be expressed in terms of the partition coefficient as
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(7.5)

where the measurable partition coefficient is
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(7.6)

It can be seen from Eq. 7.5 that the partition coefficient can be easily expressed in terms of the equilibrium constant and the respective activity coefficients.  If the behavior of the trace-element is ideal, then the interchange between the equilibrium constant and the partition coefficient is trivial. Because the equilibrium constant depends on temperature and pressure, the partition coefficient also depends on pressure and temperature. 

For non-ideal mixing, the activity coefficients deviate from unity.  Two scenarios arise.  If both activity coefficients are constant over a wide compositional range (but near infinite dilution of the trace-element), the trace-element’s behavior in the mineral and melt is said to follow Henry’s Law.  In the Henry’s Law region, the partition coefficient for a particular trace-element does not depend on its concentration in the mineral or melt.  If the activity coefficient varies as a function of concentration of the element of interest, then non-Henrian behavior is displayed.  This means that the partition coefficient cannot be constant.  It is critically important when applying measured partition coefficients to evaluate whether Henry’s Law is obeyed.


Before going on, it is important for us to recognize that the chemical reaction of Eq. 7.3 assumes that the melt behaves thermodynamically as if it contained simple ordered structural units similar to that of clinopyroxene.  In reality, the speciation of Al and Si in melts is not likely to be so simple, and therefore, reactions similar to Eq. 7.3 may only be valid for a narrow compositional interval.


More generally, we can describe trace-element partitioning as an exchange reaction between the melt and the coexisting mineral.  For example, we can describe the partitioning of Ni2+ between olivine (ol) and melt as an exchange reaction without the need to specify a melt structure

0.5Mg2SiO4 (ol) + Ni2+ (melt) = 0.5Ni2SiO4 (ol) + Mg2+ (melt)



(7.7)

For the ideal case, the equilibrium constant for reaction 7.3 can be expressed as
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or equivalently as
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where, the subscripted term KD represents the equilibrium coefficient expressed in terms of concentrations. In Eq. 7.9, 
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is the partition coefficient (often referred in this context as the Nernst partition coefficient). It can be seen from Eqs. 7.8 and 7.9 that KD depends only on T and P (Go is calculated for a given P and T) and not on bulk composition (for the ideal case).  However, from Eq. 7.9, we can see that the partition coefficient of Ni between olivine and melt,
[image: image9.wmf]Ni

ol

D

, depends on composition (e.g., 
[image: image10.wmf]Mg

Ol

Mg

melt

C

C

) since the exchange of Ni between olivine and melt depends also on the exchange of Mg.


In practice, geochemists use partition coefficients of the form in Eq. 7.1 to model the geochemical processes that fractionate trace-elements. These partition coefficients are determined by measuring the concentration of the element of interest in a mineral and the concentration of the same element in a coexisting melt. This can be accomplished from experimental studies or from natural phenocryst-lava pairs.  Partition coefficients derived by these approaches are typically compiled into convenient tables for quick reference.  The foregoing discussion, however, shows that partition coefficients in general depend on temperature, pressure, the major-element composition of the system, and also the concentration of the element of interest.  As we will learn below, the partitioning of elements with variable valence states will also depend on the oxygen fugacity of the system, which dictates an element’s dominant valence state.  Thus, the successful application of partition coefficients towards modeling geochemical processes requires that the partition coefficients appropriate for the temperature, pressure, and compositional range of interest be chosen.

7.3 Controls on partitioning

7.3.1 Goldschmidt Rules


Minerals have a wide variety of crystallographic sites in which trace-element cations can enter.  For example, pyroxenes are characterized by two cationic octahedral sites, M1 and M2.  The pyroxene formula can be expressed in terms of its structure, e.g. M1M2Si2O6. Although both the M1 and M2 sites are in 6-fold coordination, the M2 site differs from the M1 site in that it is distorted.  For example, for an orthopyroxene having the composition Mg0.93Fe1.07Si2O6, the average cation to oxygen bond distance in the M1 site is 2.10 Ao, whereas in the M2 site it is 2.23 Ao.  


Our intuition tells us that the ability for a different cation to enter one of the structural sites of orthopyroxene rests on the requirement that its ionic radius is similar to that of the replaced atom or ion (e.g., the M1 and M2 cations). Intuition also tells us that ionic charge also exerts a control on the ability of a cation to enter a particular crystallographic site.  Two elements with identical charge are more readily exchangeable than two elements with different ionic charge because exchange of disparately charged cations requires that vacancies or a second element of compensating charge be created in order to maintain electrical neutrality.  Thus, two elements that have similar ionic radii and identical charge can mix nearly randomly, such that the mixing can be said to be nearly ideal.  In such a case, these two elements can form a solid solution.  Fe and Mg, two cations that have very similar 6-fold cationic radii, thus form solid solutions in various minerals (e.g., (Mg,Fe)2Si2O6 and (Mg,Fe)2SiO4).


The attached table shows the radii of various cations for given coordination numbers.  The coordination of a cation (number of ligands) can be estimated using the anion-cation ratio, RA:RX.  The coordination numbers and corresponding minimum radius ratios are as follows: <0.155 (CN =1), 0.155 (CN=3), 0.225 (CN=4), 0.414 (CN=6), 0.732 (CN=8), 1.0 (CN=12).  The attached table from Shannon (1976) can then be used to determine cationic radii by assuming O2- has a radius of 1.4o Ao.


In 1937, Victor Goldschmidt outlined these generalizations, in what has come to be known as the Goldschmidt Rules.  They are as follows:

· Ions of similar radii and the same charge will enter into a mineral in amounts proportional to their concentration in the liquid. 

· An ion of smaller radius but with the same charge as another will be incorporated preferentially into a growing crystal.  In other words, for a given charge, the ion with the higher field strength or ionic potential (Z/r) will be preferentially incorporated into a crystal.

· An ion of the same radius but with a higher charge than another will be incorporated preferentially into a growing crystal.

The Goldschmidt Rules, however, should only be taken as rough generalizations.  A more quantitative approach has been provided by Wood and Blundy (1997), which we describe below.

7.3.2 A physical model for trace-element partitioning

Wood and Blundy (1997) presented a quantitative model to describe the partitioning of trace elements between clinopyroxene and silicate melt as a function of pressure, temperature, bulk composition, and the elastic properties of the cationic site in which trace-elements enter.  Qualitatively, their model rests on the property that substituting a cation with a different ionic radius than that of the major cation generates a strain energy that is proportional to a measure of the stiffness (Young’s Modulus, E) of the cation-oxygen bonds in that site.  If a substituting cation is larger than the major cation, it will exert a positive strain on the site.  If the substituting cation is smaller, it will exert a negative strain on the site.  The strain energy (Brice, 1975) for a perfectly spherical site is given by 
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7.10

where E is the Young’s Modulus, NA is Avogadro’s number, ro is the radius of the site, and ri is the radius of the substituting cation.  It can be seen that the strain energy has a largely parabolic dependence on cationic radius, exhibiting a minimum strain when the substituting cation has an identical radius to the site radius ro.  Wood and Blundy (1997) showed that the partition coefficient of an element substituting into a given site is expressed as
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where R represents the gas constant, T is temperature, and Do represents the partition coefficient of the major cation in that site, that is, the case in which the strain in that site is zero.  The value of Do follows from Eq. 7.6 and therefore depends on temperature, pressure, and bulk composition of the mineral.  Examples of Eq. 7.11 for clinopyrxoene are shown in Figure 1 along with experimental partitioning data (Figure taken directly from Wood and Blundy, 1997).  For a given charge, Eq. 7.11 represents a parabola, whose maximum is represented by Do and whose curvature (or tightness) depends on  Young’s Modulus, E.  Young’s Modulus is proportional to the bulk modulus K (E = 3K/(1-2 where  is Poisson’s ratio), which itself is a linear function of the cation valences
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7.12

where A is the Madelung constant, Za and Zc are the anion and cation valences, Vo is the molecular volume, e is the electron charge, n is the Born constant, and do is the interatomic separation.  Because K (hence E) increases with increasing cationic charge, it can be seen from Eq. 7.11 and Figure 1 that the higher the charge, the tighter the parabola.  Qualitatively, this results from the fact that the higher the charge, the higher the Coulombic anion-cation attraction and hence the stronger the bond.  The actual height of each parabola depends on the equilibrium partition coefficient of the strain-free cation, which can be determined by thermodynamic considerations. 


The power of using Wood and Blundy’s formulations are two-fold.  First, they provide a simple physical explanation for the controls of trace-element partitioning.  Second, they provide a means of predicting partition coefficients when experimental data are not available.  For example, one can use the Nernst partition coefficient of Ca between clinopyroxene and silicate melt to predict the partition coefficient of a rare-earth element between clinopyroxene and melt given knowledge of the cationic radii of Ca and the rare-earth element.  Tables of cationic radius in various coordinations have been calculated and tabulated.  A compilation is attached at the end of this chapter (Shannon, 1976).

7.4 Partial melting models

We now make use of partition coefficients to study the evolution of trace-element compositions during melting.  In Section 7.6, we will use what we learn in this section to understand processes of Earth differentiation.  Qualitatively, we already know that if an element is incompatible, that is D<1, it will be enriched in the melt and depleted in the coexisting solid residue.  Conversely, for D>1, the melt will be depleted in that element and the solid will be enriched.  In a closed system, the concentration of an element in the melt is related to that in the solid by

Cmelt=Csolid/DB






Eq. 7.13

where DB is the bulk partition coefficient. 
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We can also envision a scenario by which we incrementally extract batches of melt from the system, such that the mass of the system decreases with each increment of melt extracted.  Before each increment of melt is extracted, we let the concentration of an element in the melt be dictated by Eq. 7.13 assuming a closed system.  As in the first scenario, an incompatible element will prefer to be in the melt.  Therefore, the first increment of melt extracted will be highly enriched in the incompatible element and the solid residue will be depleted. If we remove the first increment of melt from the system, and then produce another increment of melt from the remaining solid residue, we will find that although the second increment of melt is enriched relative to the solid residue, the concentration of the incompatible element will be lower than that of the first melt increment simply because the concentration of the element is progressively decreasing in the solid residue with progressive melting.

The two endmember processes of melting are called equilibrium (batch) and fractional melting.  Physically, equilibrium melting describes the case in which melting takes place in a system closed to mass exchange and where the melt and solid residue always remain in equilibrium (Fig. 7.2a).  Fractional melting describes the case in which melt is instantaneously removed from the system as soon as it is produced (Fig. 7.2b).  Fractional melting can be described as incremental equilibrium melting in the limit that each melt increment goes to zero.  In general, the melting process in the mantle is closer to fractional melting than equilibrium melting.  This is because melts have much lower densities than the solid residues, and therefore, under lithostatic conditions, the melt tends to escape soon after it is created.  In detail, a critical fraction of melt must be generated before the melt can separate from the solid residue.  The critical melt fraction depends on the melt fraction and wetting angle of the melt.  If the wetting angle of a melt is low (low cohesion), it is allowed to form interconnected pathways at very low melt fractions, allowing it to readily escape.  If the wetting angle is high (high cohesion), then the melt pools at grain boundary triple points.   Only when enough melt is created will the melt pools become large enough to form interconnected pathways for melt to migrate.  These two processes are quantitatively modeled below.
7.4.1 Equilibrium melting

In any closed system, the following mass balance for an element must hold
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7.14

where 
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 represents the total mass of the element in the system (equivalent to the mass of the element in the unmelted solid), Msol is the mass of the solid at any given point in time, Mmelt is the mass of the melt at any point in time, and Csol and Cmelt is the concentration of an element at any point in time. The following mass balance condition is also required
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where Mo is the total mass of the system.  Using the relationships in Eqs. 7.13 and 7.15, and defining F to be the weight fraction of melt in the system (F=Mmelt/Mo), Eq. 7.14 becomes
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7.16

where 
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 is the initial concentration of the element in the system, e.g., in the unmelted solid.  Eq. 7.16 can be rearranged to express the concentration of an element in the melt and solid as a function of melt fraction relative to the initial concentration of the element. 
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Eqs. 7.17a and b are plotted in Figure 7.3.  Incompatible elements are enriched and depleted in the melt and solid, respectively, as melt is extracted.  Compatible elements are depleted and enriched in the melt and solid, respectively, as melt is extracted.  For highly incompatible elements (D~0), the maximum enrichment of the element in the melt is 1/F.

7.4.2 Fractional melting

Let us model fractional melting as an incremental equilibrium melting process in the limit that the mass of each melt increment, dMmelt, goes to zero.  Denoting the mass of an element in each melt increment as dmmelt, at any point in time, the concentration of an element in the solid is msol/Msol and in the coexisting melt fraction is dmmelt/dMmelt, where msol and mmelt are the element masses in the solid and melt, and Msol and Mmelt are the masses of the solid and coexisting melt.  Thus, at any instant
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Making use of the fact that dmsol=-dmmelt and dMsol=-dMmelt, Eq. 7.19 can equivalently be expressed as
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7.20

We can integrate Eq. 7.20 to obtain an expression of the mass of an element in the solid as a function of the fraction of solid mass remaining in the system
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which yields
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7.22

or
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Multiplying both sides of Eq. 7.23 by 
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It follows that the concentration in each instantaneous melt fraction is simply
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In nature, we are able to sample melts after they have reached the surface of the Earth.  It is unlikely that we can sample each instantaneous melt fraction at its source.  Instead, these instantaneous melt fractions are likely to aggregate in a magma chamber near the surface of the Earth, and it is this aggregate reservoir that we are more likely to sample.  The average concentration of an element in the aggregate melt is determined by integrating the following equation
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or expressed in terms of F,
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Integration of Eq. 7.27 then yields
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Figure 7.4 shows the effect of fractional melting on the solid residue and the melt.  It can be seen that the depletion of an incompatible element in the solid residue is more rapid during fractional melting than during equilibrium melting.  This is because with each increment of melt extracted, the concentration of an incompatible element in the system decreases during fractional melting, whereas during equilibrium melting, the system concentration remains constant.  It follows that although each instantaneous melt fraction is enriched in an incompatible element relative to the solid residue, the concentration of an incompatible element in each instantaneous melt fraction must decrease rapidly.  The concentration of the aggregate melt, however, is nearly identical to that predicted by equilibrium melting.  Thus, if fractional melts pool together in a magma chamber near the surface of the Earth, it is not possible to determine from magma compositions alone whether the melting process was fractional or equilibrium.  In contrast, the composition of the solid residue contrasts between fractional and equilibrium melting. 
7.4.3 Fractionation of trace-element relative abundances during partial melting
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We can see from Eq. 7.17, that the enrichment of a trace-element relative to its source depends on its bulk partition coefficient.  If we plot Eq. 7.17 as a function of D, we obtain Figure 7.5.  In practice, we can generate plots similar to Figure 7.5 in which the D values are replaced by elements corresponding to given D values.  If we plot the relative abundances of trace-elements in some systematic order, we will find that the curvature of the trace-element abundance pattern depends on the relative differences in D values of the plotted elements.  


For example, the partition coefficients for rare-earth elements in various minerals in equilibrium with basaltic melt are plotted in order of increasing atomic number in Figure 7.6 It can be seen that the heavy rare-earth elements (HREEs) are compatible in garnet whereas the light rare-earth elements (LREEs) are incompatible in garnet.  A garnet source will therefore generate a melt that is highly enriched in LREEs but depleted in HREEs.  A clinopyroxene- or orthopyroxene-rich source will also generate LREE enrichment relative to the HREEs, but the relative enrichment will be suppressed compared to a melt from a garnet-rich source.  Thus, trace-elements can be used to obtain information about the source region if one has some understanding of the partitioning behaviors of trace-elements in different minerals.


To quantify this further, we can express the equilibrium and partial melting equations in terms of the ratio between two different elements.  For example, the equilibrium melting equation of Eq. 7.17 can be expressed for two elements, A and B, as follows
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We can do the same for the aggregate of fractional melts
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Equations 7.29 and 7.30 in fact give nearly identical results.  The important features of the above two equations are that elemental ratios of highly incompatible elements (e.g., DA<<1 and DB<<1) in a melt remain largely constant over a wide range in degree of melting, F.  When DA~DB~0, it can be seen from Eq. 7.29, that the second term on the right is approximately unity for most F.  Only when the degree of fractional melting is very small can partial melting generate melts with incompatible trace-element ratios significantly different from their source regions.  

[image: image63.wmf]
7.4.4 Non-modal melting

In modeling the distribution of trace-elements during melting, we assumed that the modal abundance of minerals in the source region controlled the bulk partition coefficient.  In so doing, we assumed that the relative proportions of the phases within the solid residue does not change during melting.  Such a process is called modal melting.

We know from phase petrology, however, that during partial melting, the solid does not necessarily melt in exactly the same proportions as the phases present in the solid, that is, the solid phase proportions are continually changing.  For example, in a peridotite, clinopyroxene melts out faster than olivine and orthopyroxene.  This melting process is called non-modal melting. Eutectic melting is a case in point.  

Let us investigate non-modal melting for a closed system, e.g. equilibrium melting.  If we define Xj as the weight fraction of a phase relative to the entire system, where Xmelt = F, the mass balance relation of a particular element is simply
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where 
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where 
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represents the original phase proportions in the unmelted solid, where
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represents the bulk partition coefficient at the onset of melting.  We can also define the quantity
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where P is the bulk partition coefficient of the residue when melting has reached a fraction of F (note that because Xjs are with respect to the initial bulk system, we have to divide the above quantity by F to re-normalize to 100%).  Substituting 7.34 and 7.33 into 7.32, we get
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from which we can obtain the non-modal equilibrium melting relation for the melt
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We can also derive the non-modal fractional melting relation by plugging in Eq. 7.35 into 7.20 and integrating.  The composition of the solid during non-modal fractional melting becomes
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The average concentration of the aggregate of fractional melting is given by
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7.4.5 Trace-element spidergrams

It is often useful to view a lot of trace-elements on the same plot in order to maximize the information content.  To do so, geochemists make use of normalized trace-element diagrams, called spidergrams.  In such diagrams, the measured trace-element concentration of a sample is normalized by some reference composition.  The normalization serves two purposes.  First, it turns out that the abundances of trace-element masses is such that even masses are much higher than odd masses.  This is a primordial feature of the solar system (or galaxy for that matter), which results from the nucleosynthetic processes that create the elements.  Thus, if one simply plots concentrations of various trace-elements on the same diagram, a very jagged diagram would appear.  Normalization to any other rock reference eliminates this jaggedness. 
 
[image: image47]

[image: image48]
The second reason for normalization is that one can learn something about geologic processes that fractionate (i.e. change the relative proportions of trace-elements) trace-element relative abundances from their original relative abundances.  For example, if we are interested in the process of partial melting, we would normalize the composition of the melt (or residue) to our original starting composition.  Similarly, if we are interested in how sedimentary processes fractionate trace-element abundances, we might normalize to average continental crust.  For high temperature geochemical applications, it is common to normalize to a hypothetical “primitive mantle” composition or a chondritic meteoritic composition (Table 1).  For lithophile elements, both references are believed to approximate the primordial relative abundances of elements in the silicate part of the Earth.  In the case of primitive mantle, the absolute abundances are believed to represent the primordial silicate Earth, that is, an estimate of the starting composition.  

To enhance readability of a trace-element spidergram, it is necessary to agree upon the order of plotting elements.  To the non-geochemist, the choice of element sequence seems arbitrary.  However, there is some method behind all this madness!  For example, in many cases, particularly in high temperature geochemistry, trace-element spidergrams are plotted in order of increasing compatibility.  For example, Figure 7.5 shows the composition of a partial melt normalized to its starting composition and plotted in order of increasing partition coefficient, D.  As different elements have different partition coefficients, we can replace the D’s in Figure 7.5 with elements having the appropriate D value.


Figure 7.7 is an example of a trace-element diagram, on which is plotted the average compositions of continental crust, mid-ocean ridge basalt and a plume magma.  The elements are plotted approximately in the order of increasing compatibility.  Compatibilities are either determined from experiments or inferred from the compositions of melts.  At the time when experimental data were limited, the order of compatibilities was estimated by assuming, as a working hypothesis, that the continental crust was extracted from the mantle by partial melting
.  It follows from the discussions in the previous sections that the more incompatible an element the more enriched it would be in the continental crust.  By convention, it was agreed that the relative order of compatibilities is roughly defined such that the trace-element spidergram of continental crust normalized to primitive mantle (or chondrite) yields a smooth negative slope.  Broadly speaking, this inferred compatibility sequence is consistent with experimental data.  

An important feature of Figure 7.7 is that the primitive-mantle-normalized pattern of continental crust is smooth except for a few elements, such as Nb, Ta, Zr, and Hf.  The positions of these elements in Figure 7.7 obviously do not correspond to their positions in the order of enrichment seen in continental crust! Instead, Nb is plotted next to U while Zr and Hf are plotted next to Sm.  In this particular case, the reason for plotting Nb next to U and Zr and Hf next to Sm is based on the observation that Nb has a very similar compatibility to U (and Zr and Hf to Sm) during formation of mid-ocean ridge basalts. This plotting sequence may not be as arbitrary as it sounds.  By plotting Nb next to U, we see that continental crust has a negative Nb anomaly.  This implies that the petrogenetic processes controlling Nb partitioning during continental crust formation are not the same as in mid-ocean ridge basalt generation
.
7.4.6 Trace-element systematics of a differentiated Earth
The important features to note in Figure 7.7 are that the continental crust appears to be highly enriched in the incompatible elements, whereas mid-ocean ridge basalts are depleted in the highly incompatible elements (note the difference in slope).  It is generally believed that a large part of the continental crust was formed early on in Earth’s history.  Extracting continental crust out of the primitive mantle by partial melting resulted in the enrichment of incompatible elements in the continental crust.  Because a large part of the continental crust so formed was not recycled and rehomogenized back into the mantle, the residual mantle became depleted in the highly incompatible elements.  This residual mantle is often referred to in the literature as “Depleted Mantle” (DM).  Progressive extraction of continental crust from the mantle will result in progressive depletion of incompatible elements in the residual mantle - the more incompatible an element the more it is depleted from the mantle. Magmas that subsequently derive from this residual mantle, such as mid-ocean ridge basalts, must therefore inherit the depleted signature of the residual mantle.  For this reason, the trace-element abundance pattern of mid-ocean ridge basalts exhibits a relative depletion in the highly incompatible elements.  

7.5 Fractional crystallization

7.5.1 Major element effects of fractional crystallization


Here, we investigate the effects of crystallization on the trace-element composition of a magma.  There are two endmember styles of crystallization: equilibrium and fractional crystallization.  In the former, there is no transfer of mass into or out of the system, such that for any amount of crystallization (e.g, 1-F, where F is the melt fraction), all crystals remain in equilibrium with the melt.  In reality, it is highly unlikely that crystals remain in complete equilibrium for two reasons.  First, crystals tend to be denser than melts, and therefore, once a crystal is formed, it has a tendency to sink and fall out of the magma chamber, hence exiting the magmatic system (Fig. 7.8a).  The second reason is that the diffusion timescale of chemical species in crystals is slow compared to that of mechanical mixing and diffusion in the melt.  Therefore, even though the rims of phenocrysts may be in equilibrium with the host magma, the cores of the phenocrysts may not be (Fig. 7.8b).  Both the physical removal of crystals and their 
[image: image49]growth result in the incremental removal of material from the magmatic system and therefore the composition of the magma must evolve.  In the limit that each mass increment of crystallization goes to zero, that is, continuous removal of mass, the crystallization process is referred to as fractional crystallization. 

We can use major element variation diagrams to estimate the degree and composition of crystallizing phases.  A variation diagram is a chemical plot on which the compositions of a series of cogenetic magmas are plotted.  For example, a magma originally in equilibrium with olivine, will first crystallize olivine.  Upon hitting the olivine-plagioclase cotectic, olivine and plagioclase will precipitate.  This crystallization series will cause the melt composition to evolve.  Figure 7.9 shows the schematic evolution of magma going through this crystallization sequence.  Because of the high MgO and low SiO2 content of olivine, crystallization of olivine drives the magma towards MgO-poor and SiO2-rich compositions.  When plagioclase co-crystallizes with olivine, the magma composition is driven in the direction opposite the composition of the olivine-plagioclase crystallization mixture.  Simple mass balance allows one to estimate the degree of crystallization.  


The schematized example shown in Figure 7.9, however, assumes that the major-element composition of the minerals remains constant.  This is certainly not the case because the major-element composition of the phenocryst will change as the composition of the magma changes, simply because the composition of the magma and phenocrysts are thermodynamically linked.  


[image: image50]
7.5.2 Trace-element effects during fractional crystallization


We now model the effect of fractional crystallization on the trace-element composition of a magma.  We keep the same symbols that we used in deriving the partial melting relationships.  We model fractional crystallization as infinitesimal increments of closed systems.  Thus, at any given time, the following relationship must hold
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We can integrate Eq. 7.41,
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which yields
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Rearranging Eq. 7.43, we have
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Changing Eq. 7.44 to concentrations, we obtain the fractional crystallization relationship for the melt
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Figure 7.10 shows how the concentration of a trace-element evolves in a melt for different partition coefficients.


It can be seen that if an element is incompatible (D<1) then the melt is enriched in that element.  If an element has a distribution coefficient of 1, then the concentration of that element in the melt does not change.  If an element is compatible in the crystallizing phase (D>1), then the element is rapidly depleted from the melt.  In Eq. 7.45, we can see that if an element is perfectly incompatible (D=0), then the maximum relative enrichment of such an element in the melt is given by 1/F.

We can also calculate how a trace-element ratio evolves in a fractionally crystallizing melt by combining the fractional crystallization equation (Eq. 7.45) for each trace-element (denoted by element A and B):
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Eq. 7.46

Eq. 7.46 expresses how the trace-element ratio of a melt evolves from its starting composition as a function of the fraction of melt remaining F and the difference in distribution coefficients, DA-DB.  We can see that if two elements have the same distribution coefficient, e.g., DA-DB=0, then the ratio of element A to B in the melt does not change.  Similarly, if DA and DB are both very small quantities, but different, that is, both A and B are highly incompatible, then the difference, DA-DB, is a very small number, i.e. nearly equal to zero.  Thus, the ratios of highly incompatible elements in a melt also do not change during fractional crystallization.  This means that certain trace-element ratios in a crystallizing magma retain the original signature of the primitive magma, allowing us to obtain information about the magma’s origin.  


[image: image57]
7.5.3 Assimilated Fractional Crystallization
Problem Set

1. Using a graph, show that the trace-element compositions of an equilibrium melt and the aggregate fractional melt are identical for a given degree of total melt extracted.

2. Plot how the ratio of two incompatible elements (with D1 < D2 <1) evolve in a melt with increasing degree of melting.

3. How would the trace-element depletion pattern of a solid residue differ between fractional melt extraction or equilibrium melt extraction. Give a physical reason for your answer.

4. At any given pressure, the degree of melting depends on how much higher in temperature a material is above its solidus.  Given a function describing the relationship between F and depth, z, we can then calculate how the trace-element composition of a melt varies as not only a function of F but also a function of the depth of melt extraction.  Under mid-ocean ridges, the crust is very thin so that the melting column extends from where the adiabat intersects the solidus to nearly the surface of the Earth.  Under continents, the overlying crust is thick, typically 30 km, so that the melting column extends only to the base of the crust.  How would the compositions differ?

5. A plot of Nb/U versus Nb ….

6. Fractional crystallization… show that incompatible elements are not fractionated

7. Assimilated fractional crystallization

�


FIGURE 1.  The Wood and Blundy (1997) model for trace-element partitioning between clinopyroxene and silicate melt using Eq. 7.11.  This figure is reproduced exactly from Figure 4a,b in Wood and Blundy.  Data in a are experimental data from Blundy and Dalton (unpublished).  Data in b are experimental data from Hauri et al. (1994).
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Figure 7.2a.  Physical difference between a) batch (equilibrium) and b) fractional melting.
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FIGURE 7.3.  Equilibrium Melting.
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FIGURE 7.4.  Fractional Melting
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FIGURE 7.5.  Enrichment/depletion of elements relative to starting composition during partial melting as a function of bulk partition coefficient.  A melt fraction, F, of 10% is assumed.
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FIGURE 7.6.  Rare-earth element partition coefficients for minerals in equilibrium with basaltic melts (from Rollinson).








Table 7.1.  Composition of chondrites (CI) and Primitive Mantle�
�
�
�
CI chondrite1�
Primitive Mantle2�
�
�
�
CI chondrite1�
Primitive Mantle2�
�
Li�
ppm�
1.5�
1.6�
�
Pd�
ppb�
560�
3.9�
�
Be�
ppm�
0.025�
0.068�
�
Ag�
ppb�
199�
8�
�
B�
ppm�
0.87�
0.3�
�
Cd�
ppb�
686�
40�
�
C�
%�
3.45�
0.012�
�
In�
ppb�
80�
11�
�
N�
ppm�
3180�
2�
�
Sn�
ppb�
1720�
130�
�
F�
ppm�
60.7�
25�
�
Sb�
ppb�
142�
5.5�
�
Na�
ppm�
5000�
2670�
�
Te�
ppb�
2320�
12�
�
Mg�
%�
9.89�
22.8�
�
I�
ppb�
433�
10�
�
Al�
%�
0.868�
2.35�
�
Cs�
ppb�
187�
21�
�
Si�
%�
10.64�
21�
�
Ba�
ppb�
2340�
6600�
�
P�
ppm�
1220�
90�
�
La�
ppb�
234.7�
648�
�
S�
ppm�
62500�
250�
�
Ce�
ppb�
603.2�
1675�
�
Cl�
ppm�
704�
17�
�
Pr�
ppb�
89.1�
254�
�
K�
ppm�
558�
240�
�
Nd�
ppb�
452.4�
1250�
�
Ca�
%�
0.928�
2.53�
�
Sm�
ppb�
147.1�
406�
�
Sc�
ppm�
5.82�
16.2�
�
Eu�
ppb�
56�
154�
�
Ti�
ppm�
436�
1205�
�
Gd�
ppb�
196.6�
544�
�
V�
ppm�
56.5�
82�
�
Tb�
ppb�
36.3�
99�
�
Cr�
ppm�
2660�
2625�
�
Dy�
ppb�
242.7�
674�
�
Mn�
ppm�
1990�
1045�
�
Ho�
ppb�
55.6�
149�
�
Fe�
%�
19.04�
6.26�
�
Er�
ppb�
158.9�
438�
�
Co�
ppm�
502�
105�
�
Tm�
ppb�
24.2�
68�
�
Ni�
ppm�
11000�
1960�
�
Yb�
ppb�
162.5�
441�
�
Cu�
ppm�
126�
30�
�
Lu�
ppb�
24.3�
67.5�
�
Zn�
ppm�
312�
55�
�
Hf�
ppb�
104�
283�
�
Ga�
ppm�
10.0�
4�
�
Ta�
ppb�
14.2�
37�
�
Ge�
ppm�
32.7�
1.1�
�
W�
ppb�
92.6�
29�
�
As�
ppm�
1.86�
0.05�
�
Re�
ppb�
36.5�
0.28�
�
Se�
ppm�
18.6�
0.075�
�
Os�
ppb�
486�
3.4�
�
Br�
ppm�
3.57�
0.05�
�
Ir�
ppb�
481�
3.2�
�
Rb�
ppm�
2.3�
0.6�
�
Pt�
ppb�
990�
7.1�
�
Sr�
ppm�
7.8�
19.9�
�
Au�
ppb�
140�
1�
�
Y�
ppm�
1.56�
4.3�
�
Hg�
ppb�
258�
10�
�
Zr�
ppm�
3.94�
10.5�
�
Tl�
ppb�
142�
3.5�
�
Nb�
ppb�
246�
658�
�
Pb�
ppb�
2470�
150�
�
Mo�
ppb�
928�
50�
�
Bi�
ppb�
114�
2.5�
�
Ru�
ppb�
712�
5�
�
Th�
ppb�
29.4�
79.5�
�
Rh�
ppb�
134�
0.9�
�
U�
ppb�
8.1�
20.3�
�
1Anders and Grevesse [1989]�
�
2McDonough and Sun [1995]�
�
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FIGURE 7.7.  Trace-element abundances of continental crust, mid-ocean ridge basalt (MORB) and a plume basalt normalized to primitive mantle.








�





FIGURE 7.8.  a) Fractional crystallization whereby phenocrysts (gray rectangles) settle out of the magmatic system (white region); b) Fractional crystallization whereby rapid growth of phenocrysts results in the diffusive isolation of phenocryst cores from the magma; inset shows the zoned nature of such phenocrysts, which is a result of disequilibrium; c) Assimilated fractional crystallization in which melting/stoping of wallrock is concomitant with crystallization.
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FIGURE 7.9.  Schematic variation diagram showing how the composition of a melt with an primary composition of Lo changes with progressive crystallization of olivine and plagioclase as shown in Figure 1.
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FIGURE 7.10.  The evolution of trace-element concentration in a melt during fractional crystallization.  F represents the weight fraction of melt remaining.











� In detail, the continental crust was probably not extracted from the mantle by a single-stage partial melting process as its silica content (SiO2~59 wt. %) is too high to be in equilibrium with the mantle.  The true petrogenetic origin of continental crust is much more complicated than the formation of mid-ocean ridge basalts, and this is a topic of continued debate.


� The formation of continental crust may involve the melting of subducted oceanic crust or sediments.  The presence of amphibole or rutile in the melting residue of continental crust formation may be one means of creating a negative Nb anomaly as Nb can be compatible in these minerals.  By contrast, mid-ocean ridge basalt melting does not involve either of these minerals in the residue and therefore Nb behaves as a very incompatible element like U during the formation of mid-ocean ridge basalt.
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